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ABSTRACT 

We can  reformula te  the  generalized con t i nuum problem as: for regular  

,r < A we have A to the  power ,~ is A, We argue t h a t  the  reasonable  

reformula t ion  of the  generalized con t inuum hypothes is ,  consider ing the  

known independence  resul ts ,  is "for mos t  pairs  ,~ < A of regular  cardinals ,  

)~ to the  revised power of a is equal  to A". W h a t  is the  revised power? 

to the  revised power of ,~ is the  min imal  cardinal i ty  of a family  of subse t s  

of )~ each of cardinal i ty  ,~ such t h a t  any  other  subse t  of A of cardinai i ty  ,r 

is included in the  union  of s t r ic t ly  less t h a n  ,r member s  of the  family. We 

still have to say wha t  "for most"  means .  T he  in terpre ta t ion  we choose is: 

for every )~, for every large enough  ~ < ~ .  Under  this  re in terpre ta t ion ,  

we prove t he  General ized C o n t i n u u m  Hypothesis .  
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0. I n t r o d u c t i o n  

I had a dream, quite a natural one for a mathematician in the twentieth century: 

to solve a Hilbert problem, preferably positively. This is quite hard for (at least) 

three reasons: 

(a) those problems are almost always hard, 

(b) almost all have been solved, 

(c) my (lack of) knowledge excludes almost all. 

Now (c) points out the first Hilbert problem as it is in set theory; also, being the 

first, it occupies a place of honor. 

The problem asks "is the continuum hypothesis true?", i.e., 

(1) is 2 ~~ = RI? 

More generally, is the generalized continuum hypothesis true? Which means: 

(2) is 2 ~ = R~+I for all ordinals a?  

I think the meaning of the question is: what are the laws of cardinal arithmetic? 

It was known that  addition and multiplication of infinite cardinals is "trivial", 

i.e., previous generations have not left us anything to solve: 

+ # = A x # = max{h,#}. 

This would have certainly made elementary school pupils happier than the usual 

laws, but we have been left with exponentiation only. As there were two opera- 

tions on infinite cardinals increasing them - -  2 x and A + I it was most natural 
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to assume that  those two operations are the same; in fact, in this case also expo- 

nentiation becomes very simple; usually A u = max{A, #+}, the exception being 

that  when cf(A) <_ # < A we have A u = A +, where 

cf(A) =: min{n: there are Ai < A for i < ~ such that  A = E Ai}. 

Non-set theorists may be reminded that A = tt + if # = R~ and A = R~+I, and 

then A is called the successor of # and we know cf(R~+l) -- R~+I; we call a 

cardinal A regular if cf(A) = A and singular otherwise. So successor cardinals, 

are regular and also ~q0, but it is "hard to come by" other regular cardinals, so 

we may ignore them. Note R~ --- ~n<,o Rn is the first singular cardinal, and for 

6 a limit ordinal > 15] we have R~ singular, but there are limit 5 = R~ for which 

R~ is singular. 

Probably the interpretation of Hilbert's first problem as "find all laws of cardi- 

nal arithmetic" is too broad 1, still "is cardinal arithmetic simple" is a reasonable 

interpretation. 

Unfortunately, there are some "difficulties". On the one hand, GSdel had 

proved that  GCH may be true (specifically it holds in the universe of constructible 

sets, called L). On the other hand, Cohen had proved that  CH may be false (by 

increasing the universe of sets by forcing); in fact, 2 ~~ can be anything reasonable, 

i.e., cf(2 ~~ > b~0. 

Continuing Cohen, Solovay proved that 2 ~- for n < w can be anything rea- 

sonable: it should be non-decreasing and of(2 ~) > A. Continuing this, Easton 

proved that  the function A ~ 2 ~ for regular cardinals is arbitrary (except for the 

laws above). Well, we can still hope to salvage something by proving that  (2) 

holds for "most" cardinals; unfortunately, Magidor had proved the consistency 

of 2 ~ > A + for all A in any pregiven initial segment of the cardinals and then 

Foreman and Woodin [FW] for all A. 

Such difficulties should not deter the truly dedicated ones; first note that  we 

should not identify exponentiation with the specific ease of exponentiation 2 x, in 

fact Easton's results indicate that  on this (for)~ regular) we cannot say anything 

more, but they do not rule out saying something on A u when tt < A, and we can 

rephrase the GCH as 

(3) for every regular ~ < A we have A ~ = A. 

Ahah, now that  we have two parameters we can look again at "for most pairs 

1 On this see [Sh:g] or [Sh:400a]; note that under this interpretation of the problem 
there is much to say. 
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of cardinals (3) holds". However, this is a bad division, because, say, a success 

for ~ = R1 implies a success for ~ = R0. 

To rectify this we suggest another division; we define "A to the revised power 

of to", for ~ regular < ~, as 

~[~] = f 
Min~ IPI: P a family of subsets of A each of cardinality 

such that any subset of ~ of cardinality 

is contained in the union of < ~ members of P ~. 
J 

This answers the criticism above and is a better slicing because: 

(A) for every/k > ~ we have: A~ = ~ iff 2 ~ < A and for every regular ~ < t~, 

(B) By Gitik and Shelah [GiSh 344], the values of, e.g., A[~~ are 

essentially independent. 

Now we rephrase the generalized continuum hypothesis as: 

(4) for most pairs (A, a), ),[~] = A. 

Is such a reformulation legitimate? As an argument, I can cite, from the book [Br] 

on Hilbert 's problems, Lorentz's article on the thirteenth problem. The problem 

w a s  

( , )  Prove that  the equation of the seventh degree x 7 + a x  3 + bx 2 + c x  + 1 = 0 is 

not solvable with the help of any continuous functions of only two variables. 

Lorentz does not even discuss the change from 7 to n and he shortly changes 

it to (see [Br, Ch. II, p. 419]) 

(.)t Prove that  there are continuous functions of three variables not represented 

by continuous functions of two variables. 

Then, he discusses Kolmogorov's solution and improvements. He opens the sec- 

ond section with ([Br, p. 421, 16-22]): "that having disproved the conjecture is 

not solving it, we should reformulate the problem in the light of the counter- 

examples and prove it, which in his case: (due to Vituvskin) the fundamental 

theorem of the Differential Calculus: there are r-times continuously differential 

functions of n variables not represented by superpositions of r times continuously 

times differential functions of less than n variables". 

Concerning the fifth problem, Gleason (who makes a major contribution to 

its solution) says (in [AAC90]): "Of course, many mathematicians are not aware 

that  the problem as stated by Hilbert is not the problem that has been ultimately 

called the Fifth Problem. It was shown very, very early that  what he was asking 



Vol. 116, 2000 T H E  G E N E R A L I Z E D  C O N T I N U U M  H Y P O T H E S I S  R E V I S I T E D  289 

people to consider was actually false. He asked to show that the action of a 

locally-euclidean group on a manifold was always analytic, and that 's  false. It's 

only the group itself that 's  analytic, the action on a manifold need not be. So 

you had to change things considerably before you could make the statement he 

was concerned with true. That ' s  sort of interesting, I think. It 's also part  of the 

way a mathematical theory develops. People have ideas about what ought to be 

so and they propose this as a good question to work on, and then it turns out 

that  part of it isn't so". 

In our case, I feel that while the discovery of L (the constructible universe) 

by GSdel and the discovery of forcing by Cohen are fundamental discoveries in 

set theory, things which are and will continue to be in its center, forming a basis 

for flourishing research, and they provide for the first Hilbert problem a negative 

solution which justifies our reinterpretation of it. Of course, it is very reasonable 

to include independence results in a reinterpretation. 

Back on firmer ground, how will we interpret "for most"? The simplest ways 

are to say "for each A for most n" or "for each n for most ~". The second 

interpretation holds in a non-interesting way: for each a for many A's, A ~ = A 

hence A [~] = A (e.g. #z ~ when # >_ 2). So the best we can hope for is: for 

every A for most small a's (remember we have restricted ourselves to regular 

quite smaller than A). To fix the difference we restrict ourselves to ~ > :l~ > a. 

Now what is a reasonable interpretation of "for most a < :1~"? The reader 

may well stop and reflect. As "all" is forbidden (by [GiSh:344] even finitely 

many exceptions are possible), the simplest offer I think is "for all but boundedly 

m a n y  ~ . 

So the best we can hope for is (:]oJ is for definiteness): 

(5) if A > :l~, for every large enough regular a < 2~, A [~] - A (and similarly 

replacing "]~o by any strong limit cardinal). 

If the reader has agreed so far, he is trapped into admitting that  here we 

solved Hilbert 's first problem positively (see 0.1 below). Now we turn from fun 

to business. A consequence is 

(*)6 for every A ~ -l~ for some n and 2 P C_ [A] <'~ of cardinality A, every 

a E [A]<2" is the union of < : ~  members of P.  

The history above was wri/tten just to lead to (5); for a fuller history see [Sh:g]. 

More fully, our main result is 

0.1 THE REVISED G C H  THEOREM: Assume we fix an uncountable strong limit 

cardinal # (i.e., /~ > Ro,(VO < #)(2 o < #), e.g., # = ~ = ~]2,~ w h e r e t o  = 

2 where [A] <~ = {a G A: I~l < 'q.  
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~0,~,+1 = 2n~). 

Then for every A _> # for some ~ < # we have: 

(a) ~ _ < 8 < # & S r e g u l a r ~ A  [~ 

(b) there is a family79 of A subsets of A each of cardinality < # such that every 

subset of A of cardinality # is equal to the union o f<  ~ members of 79. 

Proof." It is enough to prove it for singular #. 

Clause (a) follows by clause (b) (just use 790 -- {a E 7 9 :[a[ < 8}) and clause 

(b) holds by 1.2(4)+1.3. | 

In w we prove the theorem using a generic embedding based on [Sh:g, Ch. VI, 

w (hence using simple forcing) and give some applications; mainly, they are 

reformulations. For example, for A _> "]~ for every regular 8 < "7w large enough, 

there is no tree with A nodes and > A 8-branches. Also we explain that this is 

suff• for proving that, e.g., a topology (not necessarily even T0!) with a base 

of cardinality # ~ ~ and > # open sets has at least ~ + 1  open sets (relying on 

[Sh 454a]). 

In 2.1 we give another proof (so not relying on w more inside pcf theory 

and saying somewhat more. In 2.6 we show that a property of tt = ::1,~ which 

suffices is: # is a limit cardinal such that ]a] < # ~ ]pcf(a)] < # giving a third 

proof. This is almost a converse to 2.5. Now w deals with applications: we 

show that for A _> ::1,~, 2 ~ = A + is equivalent to 0~+ (moreover A = A <~ is 

equivalent to (Dt)~, a weak version of diamond). We also deal with a general 

topology problem: can every space be divided into two pieces, no one containing 

a compactum (say a topological copy of ~2), showing its connection to pcf theory, 

and proving a generalization when the cardinal parameter is > ~ .  Lastly, in an 

appendix, we prove there are no tiny models for theories with a non-trivial type 

(see [LaPiRo]) of cardinality _> ~ ,  partially solving a problem from Laskowski, 

Pillay and Rothmaler [LaPiRo]. 

For other applications see [Sh 575, w This work is continued in [Sh 513]; for 

further discussion see [Sh 666]. For more on the general topology problem see 

[Sh 668]. 

We thank Todd Eisworth for many corrections and improving the presentation. 

1 The generic ultrapower proof 

1.1 THEOREM: Assume Iz is strong limit singular and A > #. Then there are only 

boundedly many ro < # such that for some 8 E (#, A) we have PPr(~,+,,~) (8) _> A 

(so _< cf(8) < < 8). 
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We list some conclusions, which are immediate by older works. 

1.2 Conclusion: For every # strong limit such that cf(#) = a < # < A, for some 

< # we have: 

(1) for every a C Red 73 (tt, A) of cardinality < # we have sup PCf~--complete 
_< 

(2) there is no family P of > A subsets of A such that for some regular 0 E (~, it) 

we have: A # B E P : = > I A M B  I < 0 & [ A  I > 0  

(3) cov(A, #+, #+, ~) <_ A (equivalently cov(A, #, #, ~) _< k as without loss of 

generality cf(~) > a). 

Hence 

(4) there is P __ [A]<" such that IPl = A and every A E [A] -<" is equal to the 

union of < ~ members of P,  

(5) there is no tree with A nodes and > k 0-branches when O E (~, tt) is regular. 

Proof'. By [Sh:g]; in detail (we repeat rather than quote immediate proofs). 

1) Let t~ be as in 1.1. Without loss of generality cf(k) ~ [~, #). 

Note that  sup(pcf~-complete(a)) < sup{PPr(laI+,~)(A'): A' = sup(a n A') and 
cf(A') > ~ so cf(A') < {a{ < #}, and easily the latter is < A by 1.1. 

2) By part (4) it is easy (let P4 C [A]<t* be as in part (4) and O, P2 be a 

counterexample to part (2), so for every A E :P2 we can find P~ _ P4 such 

that ]P~] < ~ and A = U{B: B E P~} hence there is BA E P'A such that 

]BA[ = 0. So A ~+ BA is a function from P2 into P4 and BA E [A] ~ and 

A1 # A2 E P2 ::# ]A1 M A21 < 0 & 0 <_ IAll & O < IA2I so the function is 

one-to-one so IP21 < IP41 < contradiction). 
3) By [Sh:g, Ch. II, 5.4]. 

4) Let P0 C_ [A] <t' be such that IP0[ < A and every A C_ [A]-<g is included in the 

union of < t~ members of Po (exists by part (3)). Define 7 ) = {B: for some A E 

P0, B C_ A} so P C_ [A]<~ and [Pol < [P01" sup{ 21AI: A E Po} < A ' t t  = A. 

Now for every A E IX] -<g we can find a < t; and Bi E Po for i < a such that  

A C_ Ui<a Bi. Let B~ = AMBi for i < a so B~ E P and A = Ui<~ B~ as required. 

5) Follows by part (2): if the tree is T, without loss of generality its set of nodes 

is C_ A and the set of 0-branches cannot serve as a counterexample. I1.2 

1.3 Remark: We can let # be regular (strong limit > R0) if we restrict our- 

selves in 1.2(1) to ]a[ < #, and in 1.2(3),(4) to A E [A] <~ as if for #' E {#' < 

#: #' strong limit singular}, ~(#', A) is as in 1.2, then by Fodor's lemma for some 

= to(A) the set S" = {tt' < #: ~(tt', A) = ~} is stationary: this ~ can serve. 

The stimulation for proving this was in [Sh 454a] where we actually use: 
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1.4 Conclusion: Assume # is strong limit, A _> #. Then for some ~ < # and 
family 7 ), [P[ _< A we have: for every n < w and a E (t%#) and f:  [~n(a)+] n+x --~ 

A, for some A C_ ~ ( a )  + of cardinality a + we have f r A E "P. 

Proof: Let ~ be as in 1.2 (or 1.2A), and T' as in 1.2(4), and let 

Pl  = {f: f a function from some bounded subset A 

of # into some B E P (hence [B[ < #)}. 

As # is strong limit and [T'[ _< A, # _< A clearly [Pll -< A. Now for any given 

f :  [~n(a)+] n+l --+ A, we can find a < ~ and B/ E P for i < a such that  

Rang(f)  C_ Ui<~ Bi. Define g: [']n(~r)+] ~+1 --+ a by: g(w) = Min{i < a: f (w) E 
B~}, so by the Erdhs-Rado theorem for some A C "in(a) +, we have: IA] -- a + 

and g [ A is constantly i(*). Now f [ A E •1 SO we have finished, ll.4 

1.5 Conclusion: If A = 1% or A strong limit of cofinality lq0, (gt, T) is a topology 

(i.e. ~ the set of points, T the family of open sets; the topology is not necessarily 

Hausdorff or even To), B C T a basis (i.e. every member of T is the union of 

some subfamily of ~), and IT[ > [HI + A, then IT[ _> 2 :~. 

Proo~ By [Sh 454a]--the only missing point is that for A > 1%, we need: for 

arbitrarily large # < A there is n E (=12(#) +, A) such that cov([B[, n+, n+, #) _< 

[BI, which holds by 1.1 (really in the proof there we use 1.4). I1.5 

1.6 Proof of 1.1: Assume this fails. By Fodor's lemma (as in 1.3) without loss 

of generality cf(#) = R0. 

Without loss of generality for our given #, A is the minimal counterexample. 

Let # = ~-~n<~#n, #n = cf(#n) < #; so for e a c h n  there is An E (#,A) such 

that  ppr(~+,~,.)(An) _> A; hence for some an C_ Reg M (#, An) of cardinality < # 
and #n-complete ideal Jn _D jbd aN we have An -- sup(an) and Ilan/Jn has true 
cofinality which is > A. Let 0n = cf(An), so #n - 0n _ [an[. 

Without loss of generality #n > lq0, hence without loss of generality Jan[ < 

#, hence without loss of generality lan[ < #n+l (and really even [pcf(an)] < 

#n+l), hence the 0n's are distinct, hence the An'S are distinct, and without loss 

of generality for n < w we have An < An+l and 0n < 0n+l < ]A, hence necessarily 

(by A's minimality) A = ~ n < ~  An, hence without loss of generality (see [Sh:E12, 

5.2]) tcf (Ha,~, _<j~) = A +. 

It is clear that forcing by a forcing notion Q of cardinality < # changes nothing, 

i.e., we have the same minimal A, etc. (only omit some #n's). So without loss 

of generality #0 = 00 = [ao[ = [pcf(a0)] -- R1, and for some increasing sequence 

(ai: i < Wl) of regular cardinals < A0 
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(*) /~0 = ~ (]r~ and i-[ 0"~/~031 has true cofinality A + 
i<wl i<wl 

(D~ 1 is the club filter on wl). 

(Of course, we can alternatively use the generalization of normal filters as in [Sh 

410, w hence avoid forcing.) (How do we force? First by Levy(lqo, < #o) then 

Levy(#o, Ipcf(ao)]); there is no change in the pcf structure for a set of cardinals > 

[ pcf(a0)l, so now laol = •1, sup pcf~,-complete(a0) > A and pcf(ao) has cardinality 
R1; let a0 = {%: ~ < wl}, pcf(a0) = {0~: r < Wl}, choose by induction on 

s < Wl, an ordinal r < 031 such that Tr r U{bo~[a0]: ~ < e and 0~ < A}, so 

I-I~<~ Or is A+-directed, hence wlog(0r : e < Wl) is strictly increasing 

so we get (*) and the statement before it.) Without loss of generality 

(*)1 a < ~ ~ lal ~' + "~3(~) < . .  for n > 1. 

Now by [Sh:g, Ch. VI, w there is a forcing notion Q of cardinality 213(R1) (< p!) 

and a name D of an ultrafilter on the Boolean Algebra P(w~)v (i.e. not on subsets 

of wt which forcing by Q adds) which is normal (for pressing down functions from 

V), extends D~ t and, the main point, the ultrapower M =: V~~ (computed 

in V Q but the functions are from V) satisfies: 

(*)2 for every n > ~3(ttl) regular or at least cf(n) > ~3(N1), for some g,~ E ~o~ Ord 

from V (but depending on the generic subset G of Q), the set {g/"~D : g E 

(~Ord)  w , g<Dg,~} is n-like (i.e. of cardinality n but every proper initial 

segment has cardinality < n), the order being <D of course. We shall say 

in short "g,~/D is n-like"; note that for each n there is at most one such 

member in M (as the "ordinals" of M are linearly ordered). 

However, we should remember V ~~ is, in general, not well-founded; still there 

is a canonical elementary embedding j of V into M = V ~ / D  (of course it depends 

on G). Note that  j maps the natural numbers onto {x E M : M ~ "x E j(w)"}, 

but this fails for Wl; without loss ofgeneralityj  [ (w + 1) is the identity. If 

M ~ "x an ordinal" let cardM(x) be the cardinality in V Q of {y: M ~ y < x}. 

Note: also jot)  is #-like and {j(#~): n < co} is unbounded in j(p). 

Without loss of generality for every n >_ 1,#n > IQI, and Min(an+l) > ,~,~. 

For every regular ~ C (#1, A +] there is x~ = g,~/D, which is n-like. Note: g~ E V 

(not E V Q \ V), but we need the generic subset of Q to know which member 

of V it is. Let {g,~,i: i < i,~} ~ V be a set such that  I~-Q "for some i < i~ we 

have g,~,i/D_ is n-like" and i~ < :]a(R1). For regular (in V) cardinal ~ E (#, ,~+), 

necessarily M ~ "x,~ is regular > j(/~) and < g~+/D_", hence without loss of 

generality g~+ = (~r : e < wl) (why? see (,), by [Sh:g, Ch.V] for some normal 
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' <: aE we have 1-Ie<~ol a~/D is A+-like, and force as above; filter :D on Wl and ar 

by renaming we have the above). 

Now also without loss of generality for regular n E (#, A +] and i < i~ we have 

Rang(g~,~) is a set of regular cardinals > it but < A0 of cardinality R1 (as without 

loss of generality g~#(E) < a~ for ~ < a~l and recall a~ < A0). For n _> I denote 

c~ =: U{Rang(g~#): ~ c a~,i < i~} and ~n =: j(r �9 M; note V ~ "Icnl 

la~l + ]Q] = ]anl". So M ~ "~n is a set of regular cardinals, each > j(#) but 

< J(A0), of cardinality _< j(ian[) < j(#,~+l) < j(#)". Also for every n �9 an we 

have M ~ "x~ �9 ~n" as x~ = g~#/D_ for some i < i~ and Rang(g~#) C c~. 

We can apply the theorem on the structure of pcf ([Sh:g, Ch. VIII, 2.6]) in M 

(as M is elementarily equivalent to V) and get (by[~n]: y �9 pcf(~n)) �9 M and 

((f~'Y: t < y): y �9 pcf(~) )  �9 M (this is not a real sequence, only M "thinks" 

SO). 

For y �9 M such that M ~ "y a limit ordinal (e.g. a cardinal)" let Ay be the 

cofinality (in Y Q) of ({x : M ~ "x an ordinal < y"}, <M). So 

(*)3 ~ = )~(x~) for m �9 aeg, n > ]QI, 

(*)4 assume ]{a: a �9  J(#m)}l < #n, then M ~ "sup pcfj(gm)_~ompl~te(~ n 

g~+/D_) >_ g~+/D_", assuming for simplicity 1 < m < n. 

[Why? Assume not, so M ~ "sup pcfj(u,O_~omplet~(~ n g~+/_D) < g~+/_D" hence 

M ~ "for every g �9 H ( ~  ng~+/D_) for some ((Yt, at): g < j(#m)), Yt �9 pcf(~n n 

gx+/D_), at an ordinal < Ye we have g < supg<j(u.~)f~/". In V q we have Ha~/Jn 

is A+-directed, hence 1-]~ea.({t: t <M x~},<M)/j= is A+-directed (by (*)~), 

hence there is a function g* such that 

(a) Dom(g*) = an, 
(b) g*(~) <M x ,  = g~/D, 

(c) if M ~ "y �9 pcf(~n N g~+/_D) and a < y" then 

{n �9 an:  M ~ "f~ '~(x~)  <M g.(~),,} = an mod Jn. 

By 1.7(1) below we can find Y �9 Y such that I Y] < IQI + + # = # and n �9 

an ~ M ~ "g*(n) �9 j(Y)". There is g| �9 M such that M ~ "g| �9 II~n and 

g| = (sup(j(Y))NO) + 1 < 0 for 0 �9 On" (as M ~ "Min(~,,) > j(#)"). 

By the choice of Y clearly ~ �9 a,~ ~ g*(~) <M g| 

By the choice of ((f~"'Y: t < Y/: Y �9 pcf(~n)) (in M's  sense) and the assump- 

tion toward contradiction we have: 

g ~ "there is a subset 0 of pcf(~,, n g~,+/D) of cardinality <: j(#m) and 

(ao : 0 �9 O) �9 IIO such that (Ya �9 ~n)( V g| < f:;'~ 
0EO 
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Choose such a sequence (co: 0 �9 O) in M and let (0~: i < i(*)) list the 0 E MO, so 

i(*) < #~ by the hypothesis of (*)4. Let a~,i = {~ �9 a~: letting a = x~ �9 M we 

have g*(a) < ~f~"'~ �9 VQ" Now as g*(~) < g~(x~), clearly a~ = Ui<i(.) a~,i. 

So for some i < i(*) we have an,i �9 J+ ,  and we get a contradiction to the choice 

of g*, hence at last we have proved (*)4.] 

Clearly j((r n < w)) is a sequence of length j(w) = w, hence j((cn: n < 
w)) = (0n: n < w), i.e. wi thn- the lement~ ,~ .  Let 2 �9 M be such that M 

"p = ((kn, tn ,  Sn): n < o3) defined by: kn < w is maximal k such that g~+/D_ <_ 

sup pcfj(ttk)_complete(Dn ~ g~+/_D), and tn is the minimal cardinal t such that 

suppcfj(.~)_~ompl~t~ (~,~ M t) is > g~+/D, and cf(t~) = s~ so s~ ~ j ( ,n )" .  As j ( . )  

is .-like clearly (Vm < w)(3n < w)(m < n and I{x �9 M: x � 9  (J(.m))}l < ,n )  

hence by (*)4 above necessarily (Vm < w)(3n < w)[[[s~]I >_ #m], but j (#)  is the 

limit of (j(#n): n < w) �9 M, hence M ~ "j( , )  = limsn". Now 

(*)5 M ~ "j(#), g),+/D_ form a counterexample to the Theorem 1.1". 

But as j is an elementary embedding of V to M, the choice of ~ (minimal) implies 

M ~ "  there is no A' < j(A) such that j ( , ) ,  A' 

form a counterexample to the theorem". 

But as Rang [g~,+/D] < J(#0) < J(s clearly we have M ~ "g~/D_ < j(A)". 

By the last two sentences we get a contradiction to (*)5. I1.1 

1.7 Observation: Let Q,D_,G c_ Q, VQ,M,j be as in the proof 1.6. Let for 

z � 9  [ z ] = { t : M ~ t � 9  So 

If Y �9 V Q, Y C_ M, X = Max{IYI VQ,IQI y} ,  then for some y �9 V, (1) 
lY[ v <- X and Vx[x �9 Y ~ M ~ "x E j(y)"]. 

(2) Assume M ~ "0 is a set of regular cardinals > 10[, > j (IQ[ v) " and &y 

(when M ~ "y limit ordinal") is as in 1.6 (its cofinality in VQ). 

(a) If M ~ "y �9 pcf(0)", J is (in Y Q) the ideal on [0] generated by 

{[b~[0]]: M ~ "0 �9 pcf(~) and 0 < y"} U {[0 \ by[~]]}, then (in Y Q) 
1-l~e[0] )~x/J has true cofinality/k~, 

(b) cf (II{A~: y �9 [~]}) = max{Ay: y �9 [pcf ~]}. 

Proo~ Straightforward (and we use only part (1)). For (2)(b) remember 

M ~ "y is finite " ~ [y] finite. 
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1.8 Remark:  Of course, the proof of 1.1 gives somewhat more than stated (say 

after fixing #0 = R1). E.g., 

@ the cardinal # satisfies the conclusion of 1.1 for ,~ >__ ,~* if 

[ ~  # > cf(/z) = R0 (as before this suffices) and # = sup{~; < #: e; is regular un- 

countable and there is a forcing notion Q satisfying the a-c.c, of cardinality 

_< A0 < #} such that  It-Q "for every Rl-complete filter D on a from V con- 

taining the co-countable sets there is an ultrafilter D on jo(a)y extending 

D as in [Sh:g, Ch. VI, w for regular cardinal > ,~+ which is complete for 

parti t ions of a from V to countably many parts".  

Alternatively, we can phrase the theorem after fixing D. 

2. T h e  m a i n  t h e o r e m  r e v i s i t e d  

We give another proof and get more refined information. Note that  in 2.1 if # is 

strong limit, we can choose R* such that: if 0 < ~ are in R* then 20 < a, and 
0 then | is immediate.  

2.1 THEOREM: Suppose  # is a limit singular cardinal satisfying: 

| for any R C_ # M Reg unbounded,  for some 0 E R, 0 > cf(#) and 01, 

cf(#) < 01,R1 ~ 01 < 0 and R* C R \ O  + unbounded in # we have: 

|176 if a < e; are in R*, f~, : 0 ~ r for a < ~, I,~ a n-complete  ideal 

on ~ ex tending  dbd and d is a O-complete ideal on O, then for some 

A E I~ + and Ba C_ O for ~ E A satisfying Be, = O m o d J  we have 

r < 0 ~ I{A(~) : c~ E A and r E B~}I < 0t. 

Then  

| for every A > I z we have: 

1 for some ~ < # we have: 

| for every a C (/z, A) M Reg of  cardinality < #, pcfn--complete(a) C A. A,/I,~ -- 

Before we prove it, note: 

2.2 Observation: Assume: 

(a) (w~: i < a*> is a sequence of pairwise disjoint sets, w n = U/<~* w~ 

(possibly w~ = O for some n and i), 
/ \ 

(b) (suplw;I § < 0 and 0 is uncountable, 
\ n , i  / 
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(c) ~/~ is a 0-complete ideal on w ~ such tha t  w n ~ Jn, 
(d) h~ or a part ial  function from w~ +1 to w n and h n = Ui<~* he 

(e) for every A �9 J~+l the set {x �9 w ~ : (Vy �9 w~+l)[h'~(y)  = x ~ y �9 A]} 

belongs to J~. 

Then  for some i there are x,~ �9 w~ such t h a t / ~  h ~ ( x ~ + l )  = x~ .  

2.3 R e m a r k :  Hence for the J r , -major i ty  of y �9 w m there is (x~: n < w} as above 

such tha t  y = xm. 

P r o o ~  Withou t  loss of generality {w~: n < w, i < (~*) are pairwise disjoint. Now 

we define by induct ion on the ordinal ~ _< 0 for each i < c~* a set u~ c_ wi  =:  

U,~<,,., wn by: 

n - t - 1  n } u~ = x �9 wi :  x �9 U uf  or (Vn ) (Vy �9  i ) [h i (y) = x ~ y �9 U uf ]  . 

So {u~: r < O) is an increasing sequence of subsets of wi.  Also uf  +1 = u~ =~ 

(V{ > ~)[uf = u~], hence there is for each i < a* a unique ([i] < ~1 + Lwd + such 

tha t  u~ - ~  r r ~ > ~[i]. - -  t ~  i 

If  for some i we have ~ r ai 5s wi ,  we can easily prove the conclusion so assume 
u~[fl 

= wi  for every i. Let # = supi(Iwil + + Ill), so except when 0 < }tl (hence 

0 = ttl = #) we know # < 0. Now we can use clause (e) to prove by induct ion 

on ~ < it for all n tha t  

U { ' d  n i < c z,  

n w ~  = w~ we get (we use J,~ is 0-complete, 0 > it). But  as i = it ~ u i 

w n E J,~, a contradiction.  We are left with the.case 0 = R1 so each w~ is finite 

~ i < c~*} c J0, and i < c~* ~ ~[i] < 0; but  then for each m we have U{u  m A w i . 

so as J0 is 0-complete there is x E w ~ such that  for each m < w and i < ~* we 

have x 6 u ~  CI w ~ For some i(*), x �9 w~ so as x 6 u hi(,) for some Xn �9 win(.) 

we have h n-1  o h n -2  o . . .  o ho(x~)  = x. By Khnig's  Lemma (as all w~,) are finite) 

we finish. |2.2 

Before we continue we mention some things which are essentially from [Sh:g] 

and, more explicitly, [Sh 430, 6.7A]. 

We forgot there to mention the most  obvious demand 

2.4 SUBCLAIM: In [Sh 430, 6.7A] we can add: 

(j) max  pcf(b~[g]) = A ( w h e n  defined).  

A l s o  in [Sh 430, 6.7] we can add 
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(5) max pcf(b~) = A. 

Proof." This is proved during the proof of [Sh 430, 6.7] (see (*)4 in that proof, 
p. 103). Actually we have to,state it earlier in (*)2 there, i.e., add 

(~) max pcf(b~ j) < A. 

We then quote [Sh:g, Ch. VIII, 1.3, p. 316], but there this is stated. 
Lastly, concerning [Sh 430, 6.7A] the addition is inherited from [Sh 430, 6.7]. 

12.4 

2.5 SUBCLAIM: In [Sh 430, 6.7A] we can deduce: 

(a) i f  a' C_ U~<~a~, [a'l < a, a' c N~, then for some/3(*) < a and finite 

c = {Oo, 01, . . . ,  0n} C_ a~(.) we have 

(i) 0 t > 0t+X, 
_ b ~ ( * )  - (ii) a' C U~<, 0~ [a], 

(iii)/3 �9 (/3(.), a) ==~ bee [~] M a' = b~} *) [~] r3 a', 
�9 b ~ ( * ) r ~ ] ) ;  (iv) 0t = max pcf(a' \Uk<~  e~ t 

(/3) moreover, (0t: ~ <_ n) is definable from a', /3(*) and (bo~(*)[~]: 0 �9 a~} 
uniformly; 

! 
i f  (a': < r �9 r < o,  la'l < then we can have one Z(*) for all 

and so ((0e,t: g _< n (c ) ) :  e" < ~) �9 NZ(,). 

Proof: Clause (a). We choose fit, 0t by induction on g. For g -= 0 clearly for 
some 3'0 < a, a' C N~o so a' C_ a.~o , hence 00 = max pcf(a') belongs to N~o hence 
to aZ for/3 �9 ['Yo,a), so by clause (i) of [Sh 430, 6.7A], (b~o[a ] : fl �9 [~o,a)) 

is increasing hence (b~o[a ] N a': /3 �9 [')'o,a)) is eventually constant, say for/3 �9 

[/30, a),/30 �9 (')'0, a). For g + 1 apply the case g = 0 to a' \ Uk<t b~ [a] and get 

0g4-1,/3~+1" 
Clauses (/3), (7). Easier. 12.5 

2.6 CLAIM: 1) Assume a >_ No is regular, A a cardinal, J the a-complete ideal 

generated by J<x[a] for a set a of regular cardinals > [a[, a r J, ai �9 J for 

i < a < la[ +, a = Ui<~ ai and max pcf(ai) < A. 
Then 3 we can find b, bi (i < a) and I such that: 

(a) bi C_ pcf(ai) is finite, 

(b) b = U i<~  hi, 
(c) I is an ideal on b , 

(d) for w C_ a we have Uie~ ai �9 J r Uie~ bi �9 I, 
(e) I is the a-complete ideal generated by J<;~[b], 

3 Note that without loss of generality/< a =~ a i r  0, so necessarily ]a] < la]. 
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(f) we have bi = {Ai,e: g < ni} and if I1 is an lql-complete ideal on b extending 

I (so la = I is O.K. i f g  > R0), then for any ~ E I + there are B c_ a and 

g* < w such that: 

i c B}  c 

(/3) i e B}  e i f ,  
(~/) for every B'  C_ B we have Uies,  bi E 11 r {Ai,e. : i E B '}  E I i .  

2) Assume in addition pcf~ _complete(tli) C hi and ~i <_ a, then we can find b, bi 

(i < a) and I such that: 

(a) t bi C pcf~i_complete(fli) C hi has cardinality < ~i 

and (b) (e) hold. 

3) Assume 

(i) I an ideal on a, 

(ii) J an ideal on/3, 

(iii) (Xi: i < a) a sequence of regular cardinals with tcf(IL<~ xdI) -- x, 

(iv) for i < o~,(T): j < /3} is a sequence of regular cardinals with 

tc f (Hj< ~ Tj /J )  = Xi, 

(v) (aj: j </3) is a sequence of regular cardinals, 

(vi) lal + 1/31 + E j < r  < min{T): i < a , j  < /3}. 
Then there are for each j < /3  an ordinal ej < aj and sets (bJ: e < ej) such that 

(a) [.J~<~, b j C_ {T): i < a} and if max pcf{Tr i < a , j  </3} = X then equality 

holds, 

(b) hJ =: max pcf(b j) is in pefa,_complete(bJ), 

(c) letting J* be the ideal with domain Uj<~{J} x ej defined by A E J* iff 
max pef{A~: (j,~) E A} < X, we have X = maxpcf{h~: j </3, e < ~j}, 

(d) if  w E J*, X then {i < a: {j  </3:  ~e < ej[~-) �9 bJ~ A (j,e) �9 w} q~ J}  �9 I.  

(Note that J* is a proper ideal and I](j,e)c Dora(J*) hi~ J* iS x-directed by basic 

pcf theory.) 

Proof'. By the proof of [Sh:g, Ch. VIII, 1.5] or by [Sh 430, 6.7, 6.7A, 6.7B] (for 
(1)(f), shrink A to make ni constantly n*, then prove by induction on n*). In 
more detail: 

1) Without  loss of generality Min(a) > ]a] +3. To be able to use [Sh 430] freely 
in its notation rename ai as ei. We apply [Sh 430, 6.7A, p. 104] with a, ~, a 
there standing for a, ta[ ++, [al + here and without loss of generality (ei: i < a) E 
No, h E No. By Subclaim 2.5 above for each i < a there are/3(i) < lal + and finite 

bi C_ pcf(ei) (~ a/3(i) such tha t /3  E [/3(i), [al +) ~ ei C Uueb~ b~+a[a] �9 Moreover 
((b,,j3(i)): i < a) E U~(.) for/3(*) = (supi<~ 13(i))+w < lal + and let b = [-Ji<~ bi 
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and I = {c _C b: we can find r < a and (cs : e < ~) such that r = U~<r c~ and 
max pcf(c~) < A}. Let us check all the clauses of the desired conclusion. 

Clause (a): bi C pcf(e~) is finite. 

Holds by the choice of hi. 

Clause (b): b = Ui<~ hi. 
Holds by the choice of b. 

Clause (c): I an ideal on b. By [Sh:g, Ch. I] and the definition of I. 

Clause (d): For w C a we have UiEw r E J r UiEw bi E I. 
Why? By the definition of I and J ,  it suffices to prove for each subset w of a 

that 

m a x p c f ( U e i )  < A ~  m a x p c f ( U  hi) <)~. 
JEw iEw 

First assume max pcf(Uie ~ ei) < A. Now j e w ~ bj c_ ~Jie,o pcf(ei) hence (by 

[Sh:g, Ch.I, 1.11]) pcf(Uje ~ bj) c_ pcf(Uie ~ ei) so 

maxpcf(  U hi) _< max p c f ( U  r </~, 
iEw JEw 

as required. 

If the other implication fails, then there is w C_ a which exemplifies it in 

NZ(,) (as all the relevant parameters are in it), so we need only consider w E 

N~(,). Assuming w E N~(,) and max pcf(Ui~ w bi) < A let b' =: Uicw bi, so 
b' E N~(,) A an(, ) and max pef(b') < A, and by [Sh 430, 6.7A(h)] for some finite 

c c_ pcf(b') N NZ(,) we have U0ec b0~(*)[ fi] includes b', recalling /5(,) is a limit 
ordinal. 

By [Sh 430, 6.7A(f)], i.e., smoothness 

~- E b' ~ b~(*)[a] c U b~(*)[ a] 
OEc 

hence 

iEw JEw 

V ~-" e u(b~(*)[a]: ~- e b,} ~ V < �9 U bff(*)[al 
JEw JEw OEr 

6Er 

So U ~  ~, c Uo~ b~(*)[~] hence 
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max p c f ( U  r _< max p c f ( U  bo~(*)[g]) 
i E w  OEr 

< max(max pcf b~(*)[a]) = max(c) < 
OEr - 

(we use Subclaim 2.5 above). 

Clause (e): I is the a-complete ideal generated by J<~[b]. 

By the choice of I. 

Clause (f): As I~ is R~-complete for some n* the set ~ N U{b~ : [bi[ = n*} belongs 

to I +. Now we try to choose by induction on ~ _< n* + 1 a set Bt C a decreasing 

with ~ such that: 

(a) {Ai,k E ~ : i E B ~ a n d k ~ _ t ~ } E I  +, 

(j3) for each k < t~ the set {hi,k: i E Bt}  belongs to I1. 

For ~ = 0, the set B0 = {i < a: Ibi[ = n*} is O.K.: in clause (a) we ask 

[.Ji<~ bi VI 0 E I +, by which we mean 0 E I + which is assumed, and Clause (~) is 

empty (no k < g!); lastly by the choice of n* we are done. 

For ~ + 1, if/~, Be are not as required, then there is B ~ C_ Bt such that the 

statements 

" bi E " �9 E E 11" LJ I1" and {)%t. i B ~} have different truth values. 
i E B  ~ 

By obvious monotonicity this means UieB, bi ~ 11, {hi,t: i E B'} E I1 so let 

B t + t  = B p- 

If Bn-+l is well defined we have by clause (a) that {Ai,k : i E B,~.+I and k > 

n* + 1} 6 I + but as B~*+I C B0 this set is empty, easy contradiction. 
2) Same proof except that, for defining hi, instead of quoting 2.5 we use [Sh 430, 
6.7A(h)+]. We could have used it in the proof of part (1) here. 

3) We apply [Sh 430, 6.7A] to a =: {T~: i < a , j  < 13} U {X': i < C~} and 

without loss of generality (Zi: i < a>, I, J, (aj: j < f~) and <(~-~: j < $>: i < a> 

belong to No. Let a* E J<x[a] be such that J<_x[a] = J<x[a] + a* and let 

cj = {Tj: i < a } M a *  but if possible a* = a. Again by [Sh 430, 6.7A(h) +] 

for each j there is cj C_ PCfa~-complete(r such that cj C [.J#ec~ b~+l[a] �9 Let 

cj -- {A~: e < Q} with no repetitions and let b j = ~#+lf-, vx~ ta]N ej. 

Now clause (a) holds by the choices of cj and b j. As for clause (b), note 

max pcf(b~) = )~ by 2.4, i.e., clause (j) of [Sh 430, 6.7A] and clearly A~ E 

Pcf~-complete(r but A j ~ pcf(r \ b~) by clause (e) of [Sh 430, 6.7A] so neces- 
sarily M E pcf~j-eompl~t~(b~), that is clause (b) holds. 
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Let J* be the ideal with domain Uj<p{J} x ej defined by 

J* = {A C Dom(J*): max pcf{AJ: (j,e) E A} < X}. 

By transitivity of pcf, X E pcf({7~: i < a , j  < ~3}) hence by the choice of a*,ej 

clearly X = max pcf(Uj< z ej). 

As in the proof of clause (d) of part (1) we have 

(,) for w C_ a we have 

m a x p c f ( U e i )  <Xr m a x p c f ( U r  <X. 
JEw JEw 

We conclude that  X = max pcf(Ue< ~ ci), hence J* satisfies clause (c) (well 

maybe r fq r 5 ~ O? Remember [Sh:g, Ch. I, w 

Lastly, we prove clause (d) so assume w E J*; so by the definition of J*, we have 

max pcf(O) < X where ~ = {A{: (j, e) E w}. So by transitivity of pcf ([Sh:g, Ch. I, 

1.11]) as X = tcf([L<~ xi/[) necessarily B =: {i < a: Xi E pcf(0)} E I. Now 

for each i E a "- B we have Xi ~ pcf(i)) hence Xi ~ pcf(O M ei); but I-[j<~ Tj/J 
has true cofinality Xi, so necessarily Bi =: {j < fl: Tj E ~ M ei} E J. Checking 

the meaning you get clause (d). I2.6 

2.7 Observation: If/~ > R0, A E PCf~--complete(a), then for some 0, ~ < 0 = 
cf(0) ___ [a[, and (Xi: i < 0) we have: Xi regular, Xi E A n pcf(a) and for some 

0-complete ideal I 2 J0 bd we have A -- tcf(y]~<~ x j I ) .  

Proo~ Without loss of generality A = max pcf(a), otherwise replace it by bA[a]; 

let J be the R-complete filter on a which J<x[a] generates. Let 0 be minimal such 

that  J is not 0+-complete so necessarily a _< 0 = cf(0) _< lal; as we can replace a 

by any a' C a, a' ~ J<x[a] without loss of generality a is the union of 0 members 

of J ,  so for some ai E J (for i < 0) we have a = U{<e a,; as J is 0-complete 

without loss of generality ai E J<A[a]. By 2.6(1), we have (b~: i < 0), b and I as 

there. As J is 0-complete {Uie,~ hi: Iw] < 0} c_ I, so by applying clause (f), we 

can finish. I2.7 

Proof of 2.1: We shall prove | by induction on A. Arriving at A, assume it 

is a counterexample so necessarily A > #, cf(A) = cf(#). For each n < # there 

is a c_ (/z, A) such that  lal < / z  and Pcf~-complete(a) ~ ~, so by [Sh:g, ChlX, 4.1] 

without loss of generality for some R-complete ideal J on a, A + = tcf(IIa/J). So 



Vol. 116, 2000 THE GENERALIZED CONTINUUM HYPOTHESIS REVISITED 303 

(by 2.7) the following subset of (cf(#),#) rl Reg is unbounded in # (by 2.7): 

R =: {8: cf(#) < 0 = cf(0) < # and there is (Xo,r : ~ < 0), 

a sequence of regular cardinals E (#,)~) 

and a 8-complete ideal Io on 8 extending jba such that  

I Ixo , r  has true cofinality A+}. 
r 

Let O,Ot,R* be witnesses for | (i.e. |176 holds); without loss of generality 

otp(R*) = cf(#) and remember ef(it) < 8~, 8 + < Min(R*), 8 E R. Let c~* = 8; 

we now define by induction on n the following: J~, w n, (w~: i < 0), (,k~: x E w'~), 
h ~ as in Observation 2.2 such that {x E w n : ~ < p+} E J~ and h'~(y) = x ::* 
A~ < )~, so we shall get a contradiction (the domain of h,~ is {x E w'~+l: 3,~ > 

#+}). We also demand ~ x e ~  A~/J~ is ,~+-directed and [x ~ w n ~ #+ < ,~ < ,k] 

0 = {i}, )~i = X0,i, and Jo = Io. Suppose all have been hence ,~+ < ~. We let w i 
defined for n. Now by the induction hypothesis on ), (as it = sup(R*)) for every 

x E w. ,  if ,k~ > it+ then for some a = ajax I E R* we have 

a C (it,,~x) ~ In[ < it =~ pc[a-complete(a) ~ ~=. 

Remember Jn is IR*i+-complete (as 0 > cf(#)), so it is enough to deal separately 

with each u ~,~ = u(n,a) ---: {x E wn: a[,~x] = a and ~x > #+} where a E R*. 

If u '~'~ E Jn we have nothing to do. Otherwise choose ~ E R*, ~r > a, 0 

and I ~ ,  (X~,r ~ < ~ )  witnessing ~ E R. By [Sh:g, Ch. IX, 4.1] applied 

to X~,r < A+ = tcfl-Ixe~(n,~) )~/Jn, for each ~ < ~ we can find a sequence 

(~-~,~,r x E un:~), ~-~'~'r regular < A, but > it+ and 1-~,e~(,,,~) Tn'a'r has true 

cofinality X~.,r 

Now apply 2.6(3) with a, 13, I ,J ,x , (Xi:  i < a},(T~: j < 13),(hi: j < 13) 
there standing for n,,,u(n,a),I,~,,Jn [ u(n,a),A+,(X,~.,r r < t~),  (T~'~'r x E 

u(n,a)), (a: z E u(n,a)). This gives us objects (b~'"'~: x E u(n, cr),E < r and 

J~,~ as there. We could have changed some values of "rn'a'~ to #+ to guarantee 

that A "~ = max pcf{7~'a'r x E u(n,a), r < ~r so without loss of generality 

b :  r < = U 

By 2.6(3) clause (d), we have 

(*)1 if w C Dom(Y '~,~) and 

n O*~E {~ < ~,,: {x E u(n,a): (3E < e~)[~': '~'r E b~' &:(x,r E w]} ~ Jn} ~ I ~ ,  
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then  w ~ J~ '~ .  

Let  I '~'~ be  the  ideal on D o m ( J  n'~) defined by 

w �9 I n,~ r  {r < ~ :  {x �9 u (n ,a ) :  (3~ < ~s)[~:  '~'~ �9 b~ '~'~ 

(x,r  �9 w]} ~ Jn} �9 I~ . 

Now (*)1 tells us tha t  Jn,~ C_ In,% Note tha t  since I ~  and J~ are 0-complete  

p roper  idea l s - -we  assumed u(n, a) ~ Jn--We have tha t  I ~,~ is a ~-complete  

p roper  ideal on Dom(J '~ ' " ) .  This  means  tha t  if we want  to verify t ha t  a set  is 

not  in the 0-complete  ideal genera ted by Jn '~ ,  it suffices to see it is not in I ~'~. 

By  2.6(3), (b) we have A~ '~'e =:  m a x  pcf(b~ ,~,E) is i n  p c f a _ c o m p l e t e ( b  s ). 

Since b T M  C_ As, our choice of a[A~] = a guarantees  

( , )2  ~ '"'~  = max pcf(b~ '"'~) < ~ .  
n~O"  For ~ < ~ , , l e t  f~ : u(n,  a)  -+ a be  defined by f i (x)  = M i n { c < e s : T ~  '~'r �9 

b~ '"'~ }. Now we can apply  the choice of 01,0 (i.e., for t hem |  ,o,o, holds), only 

ins tead of " J  a 0-complete  ideal on 0" we have here ".In is a 0-complete  ideal 

on a set  of cardinal i ty  0 and actual ly  use J ,  F un'~". So we get A ",~ �9 I +  and 

n,,, = u(n, a) m o d  Jn for ~ �9 A ",~ such that:  Be 

(*)3 x �9 u ~'~ =~ 01 > I{f~ '~(x) :  ~ �9 A ~'~, x �9 B~'~}t. 

Let  us define 

wn+li,a = {(x , a ,  e): ( 3 ;  �9 d'~'")[x �9 B~"  and e = f~'"(x) and x �9 w~]}, 

he,,, : wi,," n+l ~ w i~ is h~,(,((x, a, e)) = x when As > #+,  
n~O*~E x �9 u n'~ ~ ~(~,~,~) = A s . 

~+1 = O. Now we Recall  we are assuming u ~'~ �9 J+'n, if i �9 u '~'~ �9 J~ we let wi, ~ 

switch " integrat ing" on all a �9 R*: 

wn+l U - n+l 
�9 ~ "Odi~ O. �9 

aER* 

We let 
wn+:  U i i - - + i  ~,~ n . = ~..)wi,(, , ,  = U Uhi, , , ,  

aER* i<~ aER* i<8 

( 
Jn+ l  = ~z~ c_ wn+l:  for some i < 0 and uj C_ u for j < i we have 

( J  uj  and for each j <: i we have U 

i<j 

)~+ > m a x  pcf()~(s,a,~): (x,a,e) �9 u j } } .  
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Most of the verification that w ~+l, h ~ and Jn+l a r e  as required is routine; we 

concentrate on a few important points 
~0 ]w~ +I] < 0~. 

[Why? By (*)3, as cf(#) < 01 < 0 so the e do not cause a problem.] 
[~1 if x �9 W n, h x > p+ and h~(y) = x, then Ay < hz. 

[Why? Choose a such that  x �9 u(n, a). If u(n, ~) �9 J~ then h~ = #+ < A~. 

If u(n, ~) r Jn then we are done by (*)2.] 

~2 w ~+1 r ./n+l. 
[Why? Choose a �9 R* with u(n,a) ~ J~, and let v(n,a) = {(z,e): 

(x,o,~) e ~+~}. 
For ~ �9 A ~'~, 

B~ '~ C {x �9 u ( n , a ) :  (3e < e~)[r~ '~'r �9 b~ '"'~ A (x,e) �9 v(n,a)]}, 

~3 

and so v(n, a) ~ In'% Thus v(n, a) is not in the 0-complete ideal generated 

by J~,~, and the definitions of J~,~ and Jn+l imply w~ +1 ~ J.+l.]  

For every A e J,~+I,B =: {x �9 wn: (Vy �9 w'*+l)[h~(y) = x ~ y �9 A]} 

belongs to J~. [Why? Suppose toward a contradiction that  B �9 J+,  

and choose a E R* such that B N u(n,a) �9 J+n" Let A1 = {(x,a,r �9 
w'~+l: x �9 B}, and let A' = {(x,e): (x,a,e) �9 A}. For ~ �9 d ~,~ as 

n,a J+" also n,a = u(n,a) modJ~ clearly B MBr �9 ~, Be 

B n B ~  ',~' c_ {~ e ~(n,~):  (3~ < ~,)[Tf '~''r e b~ '~''~ A (x,~) e A']}, 

and since B M Be C J+,  by the definition of I n'~ we know A' ~ I n'~ hence 

A1 ~ Jn+l but by the definition of B,A,  clearly A1 C A, hence A ~ J~+l, 

contradiction.] 
Thus we have carried out the induction and hence get by 2.2 the contradiction 

and finish the proof. 112.1 

2.8 Remark: 1) We can be more specific phrasing 2.1: let R* C_ # be unbounded, 

f' = (F~: a C R*), F~ a set of ideals on ~; the desired conclusion is: for every 

h > ~ for some (~* < t~ we have: if a E R* \ a*, hi E (#, h) ~ Red for i < a, J ,  

g e F~ then pcfr~ (I-[i<, hi, _g)  ~ h. (Red is the class of regular cardinals.) 

2) You can read the proofs for the case # strong limit singular and get an 

alternative to the proof in w 

2.9 CLAIM: Assume h* > tt > RI,# an uncountable limit cardinal and we have: 
1.5 for every h E (#, h*], we have | (from the conclusion of 2.1). | 

Then 
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| (a) a C_ (#, A*), a c_ Reg, lal < U ~ I,X* n pcf(a)] _< #, 

(13) i f  /z is regular then (for a C Reg): 

a c_ (p, A*) & lal < / z  ~ I~* n pcf(a)l < #. 

/z if/Z is singular, 
Proof." Let/z(*) --- 

/Z if/Z is regular. 

So assume a c_ (/Z, A*) n Reg, lal </z, and A* M pcf(a) has cardinality > #(*). 

Let Ao = Min(a) and (Ai+l: i < #(*)) list the first (/Z(.) + 1)-members of 

(pcf(a)) \{Ao} (remember pcf(a) has a last member), and for limit ~ < #(*), let 
1 A~ = Ui<~ Ai so A~(,) < A*. Now by an assumption for some ~ </Z, | 

(from 2.1), without loss of generality tr is regular. Now choose by induction on 

< #, i(~) such that i(~) < #(*) is a successor ordinal, i(~) > U~<r i(~), and 

)~i(r > suppcf~-complete({)~i(~): ~ < ~}). 

Why is this possible? We know pcfa_complete({)~i(~): ~ < ~}) cannot have 
a member > A,(.) (hence > A,(.) being regular), by the choice of ~. Also 

Pcf~-~ompl~t~({Ai(~): ~ < ~}) cannot be unbounded in A,(.) (because cf(A,(.)) = 
#(*) > a (remember #(*) is regular) as then it will have a member > A,(.); see 

[Sh:g, Ch.I, 1.11]). So it is bounded below A~(.), hence i(~) exists. 

Now we get a contradiction to [Sh 410, 3.5], version (b) of (iv) there (use, e.g., 

(A,(r : r < (~ + lal)+4)) (alternatively to [Sh 430, 6.7F(5)]). I2.9 

2.10 THEOREM: Let # be a limit uncountable singular cardinal, # < A and 

[[a[ < # and a c_ RegN (#,A) :=~ [A n pcf(a)l < #], ora t  least: 

~ , .~  for every large enough a E Reg N #, we have: 

e~,~ if a c_ Reg n (/Z,,~), lal < #, thenl)~npcf,,-eompleto(a)l</z. 

Then for every large enough ~ < # we have | of 2.1, hence coy(A, #, #, ~) = ft. 

Remark: This proof relies on [Sh 420, w 

Proof: Without loss of generality cf(#) - R0 (e.g., force by Levy(R0,cf(/z)) as 
nothing relevant is changed by the forcing, or argue as in 1.3 as @g,~ implies that, 

for each X E [cf#,/z], the cardinal sup{ IANpcf~.complete(a) l : a C Reg N(#, A), I.I < 

X} is < #; however, we can just repeat the proof). 
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Assume this fails. Without loss of generality h is minimal, so cf(h) = No- 

Failure means (by 2.7) that # = sup(R) when 

R =  / 8 : 8 � 9  R e g a n d f o r s o m e x r 1 4 9  Reg N(#,h)  f o r ~ < 8 ,  

and 8-complete ideal I on 8 

have h + = t c f ( H  Xr we 

For simplicity assume that  for X < # and A C_ (2x) +, in K[A] there are Ramsey 

cardinals > X- This makes a minor restriction; say for one h we may get < h + 

instead of < h + (which is equivalent to < h). 

So by [Sh 430, w for some uncountable regular a < ~ from R \ cf(#) +, @7~,; 

from the assumption of the theorem holds and for some family E of ideals on 

n normal by a function ~: n--+ a and J �9 E and h~ = cf(h~) �9 (#,h), h + -- 

tcf(I-a< ~ Ai/J) and (Ai: i <: ~), J minimal in a suitable sense, that  is ~( . )  = 

rk3((hi: i < ~), E ) i s  minimal, so without loss of generality rk~((hi: i < n), E) = 

rk2((hi: i < ~), E). Hence we do not have A C n, n "-A ~ g and h~ �9 (#, h)M 

Reg such that (h~: i < n) <J+A (hi: i <: n) and h + = tcf(I-[i<~h~/J). As 

cf(#) = R0, we can find (Sn: n < w),n < 8,~ �9 R;3 # and # -- Un<~oSn. As h is 

minimal there is a partition (u(n): n < w) of n, such that: 

(*) i �9 u(n), n < w, lal < #, a C_ Reg M (#, hi) ==~ pcf0~-~ompl~t~(a) C_ hi. 

So for some n we have u(n) �9 J+. Without loss of generality (Vi < a)(hi > #+) 

and (as a > b~0) for some n = n(*) we have u(n) = ~ (i.e., the minimality of a(*) 

is preserved). Choose 8 �9 R N # large enough such that 

(Va) [a c Reg n (~, h) and lal _< 8n~./+ ~ Ih n pcfo_compl~te(a)l < 8]. 

(Why is this possible? As @7~,~ which holds by the choice of a.) As 8 E R M 

we can choose a sequence (Xr ~ < 8) and I _D jbd a 8-complete ideal on 0 such 

that  Xr C (#, A) and tcf(1-Ir Xr = h +. By [Sh:g, Ch. IX, 4.1] we can find 

r~ = cf(~'[) �9 (#,hi), T[ < hi such that Xr = tcf(I-Ii<~T[/J) �9 
Now a =: h f3 pcfa_complete{T/~: i < ~,r < 8} has cardinality < # (by the choice 

of a) and has a smooth closed representation (b~(a): T �9 a) (see [Sh 430, 6.7]). 

For i < ~ there is ci C_ PCfe,(.)-complete{~-/: ~ < 8} such that  Ici[ < 8,~(,) and 

Ar T [ e  U{bT(a) : T �9 r (by the choice of n(*) and by [Sh 430, 6.7], note 

that  a < ~ < 8n(.) by their choices, hence pcf0,~(,).complete{T/~: ~ < 8} C_ a hence 

all is O.K.). Also r C hi because we are assuming u,~(.) = ~. 
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Let 

Ti/(J+ A)): (Ti: i < n) E H ci and A E J+  and 

tcf(1- [ Ti/(J q- A)) is well defined}. 
lEA 

Let c = Ui<~ ci. So ]c[ 5 n + O,(,) hence A M pcfa.complete(r has cardinality < O, 
and 0 C_ A by the choice of a(*) and 0 C PCfa-complete(C) hence ]0[ < O (by the 
choice of O). 

Now if ~ E A + • pcf(c) then 

Br = {r < 0: {i < ~: T[E  br r J} E I. 

[Why? Otherwise ~ E Be =~ Xr E pcf(br hence pcf(b~[a]) includes 

pcf{xr ( E B~}, but as Be ~ I the cardinal A + belongs to the latter; but 
max pcf(br = ~p < A, contradiction.] 

But we know that [0[ < 0, and I is 0-complete and 0 C pcf(c), so 

< 0: for some r E 0 we have 

{ i < n : T f E b r  C U B c E I "  
CEO 

So there is some 4" E 0 \ X, and for i < n choose Ti E ci such that T/c* E b'r, [a] 
(well defined by the choice of ci). So by smoothness of the representation 

r E ~ =~ {i < n: Ti E b,[a]} C {i < n: T[* E be[a]} E J. 

Now by the pcf theorem for some A E J+ we have ~i~A TCi"/J has true cofinality 

which we call T, so necessarily T E pef~-complete({T/C: i E A}) E ~ (see the 
definition of ~), but this contradicts the previous sentence (recall i~ C A by the 

minimality of a(*)). I2.1o 

3. App l i ca t ions  

Of course 

3.1 CLAIM: f f  [~ is as in 2.1, then the conclusions of l .2  and 1.1 hold. 
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3.2 CLAIM: /lCA k ~w then: 

(a) 2 ~ = ~+ ~ (~+, 

(b) ~ = ~<~ iff (DO~, 

where we remember 

3.3 Definition: 1) (De)~ means that: 

A is regular uncountable and there is 7 ~ = (P~: a < A) such that P~ is a 

family of < A subsets of a satisfying: 

(*) for every A C A, {c~ < A: A N a E P~} is a stationary subset of A. 

2) (De)~ (S C A stationary) means A regular and there is P as above such that: 

(.) for every A C A we have {a E S: A rl x ~ P~} is not stationary. 

3) (De) + where S C A is stationary, A regular uncountable means that: for some 

I B as above: 

(*) for every A C A for some club C of A we have: 

~ E S n C  ~ A n h  EP~ & CNh E P~. 

4) Let A be regular uncountable, S C_ A stationary. Now (}s means that there is 

(A~: c~ E S) such that  A~ C_ a and for every A C_ A the set {a E S: A r7 a = As} 

is a stationary subset of A. 

5) For A regular uncountable and S C A stationary (De)8 means that for some 

(P~: c~ E S} as above, for every A C_ A the set {5 E S: A N 5 E Pz} is stationary. 

3.4 Remark: 1) If A is a successor cardinal, (De)~ is equivalent to 0~ (by 

Kunen), so (a) is a particular case of (b) in 3.2. 

2) By [Sh 82], [HLSh 162], if (De)~ then the omitting types theorem for L(Q) 

for A-compact models in the A+-interpretation holds (and more). Now A = A <~ 

is the standard assumption to the completeness theorem of L(Q) in the A +- 

interpretation; and is necessary and sufficient when we restrict ourselves to A- 

compact models. So the question arises, how strong is this extra assumption? If 

G.C.H. holds (De)~ r A -- A <~ for every A ~ R~ (by [Sh:82], continuing Gregory 

[Gre]); and more there. Here we improve those theorems. Now 3.2 says that 

above ~ ,  the two conditions are equivalent. 

3) We may consider the function h : A --+ A M Car, demanding IiO~ I < h(a). 

4) Remember that for A > R0 regular and stationary S = S~ c $2 C A we have 

(De) + ~ (De)* s ~ (De)s and (De)s, ~ (De)s2, but (De)~ ~ (De)~l, (De)+ =v 

(De)+ �9 

3.5 Proof of 3.2: By 3.4(1) it suffices to prove clause (b). Trivially (De)~ ~ A = 

A <~, so assume A -- A <~, and let {A*: i < ),} list the bounded subsets of )~, each 

appearing A times. 
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For each a < A let 

Re = {~ < "3~: cov(ia], ~+, ~+, ~) < A and ~ is regular}. 

We know (by 1.2(3)) that for each a E ( ~ ,  A), R~ contains a co-bounded subset 

of Reg n ~ ,  say Reg r3 ~ \ "3n. So for some n* < w 

S* -- {a < )~: a > "3,~, na < n*} 

is unbounded in A; hence trivially S* = (-]o~, A). So R =: {~ < A: ~ is regular, 2 ~ 

< A and for every a < A we have cov(iai,~+,~+,t~) < A} contains Reg M 

(-ln.,-]~). As A = cf(A) > "1~, for each a < A, ~ E R there is P~, a family of 

< A subsets of c~ of cardinality ~ such that if A C_ a, ]A I = ~ then A is included 

in the union of < t~ members of 7)~. 

Let P* = {B: for some~ E R D ( a +  1) a n d A  �9 7 ) ~ w e h a v e B  C_ A} so 

7)* is a family of < ~ subsets of a. For each A C_ A we define hA: .~ -+ .~ 
by defining hA(a) by induction on a : for a non-limit hA(a) is the first ordinal 

i > U~<~ hA(fl) + 1 such that A M a = A* and for a limit hA(a) = U~<~ hA(~). 
So hA(a) is strictly increasing continuous, hence hA(a) > a and h(a) = a e+ 

[(a limit) & (V/3 < a)(hA(fl) < a)]. Let 

p o = :  A : B � 9  , 

" ~ E B  

7)a =: 7)~ U {{~  < a: hA(~) = /3}: A �9 7) ~  

(remember (A*: a < ,~) lists the bounded subsets of )~ each appearing unbound- 

edly often). 

Now for any A C A we have E --: EA ----: {6 < ,~: 5 limit and A~<~ hA(~) < ~} 
is a club of ,~, and 

(*)~ c f ( 6 ) < 5 � 9  c f ( 5 ) � 9 1 4 9  )~ 

[Why? Let ~ =: cf(5), and let (~j: j < ~} be an increasing sequence of successor 

ordinals with limit 5, hence (hA(~j): j < ~) is (strictly) increasing with limit 

5; so for some ~ < ~ -- cf(6) and B/ �9 7)~f(~) for i < ~ we have {hA(~j): j < 

~} C_ U/<~ B~, so for some i, {hA(~j): j < ~, hA(~j) �9 B~} is unbounded in 5, 

and clearly U' =: j < n B, �9 hence U{A;: �9 U'} �9 7)0 as 

required]. 

Also 

(*)2 c f ( 5 ) < 5 � 9  c f ( 5 ) � 9 1 4 9  

[Why? As A C A, 6 �9 EA ~ hA [ 5 : hAm,~ I ~'] ~3.2 

Note that we actually proved also 
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3.6 CLAIM: 1) Assume A = #+ = 2 ~ > X, X strong limit, then for some X* < X 
+ 

we have <>{5<x: x*<cf(5)<x}" 

2) Similarly, for A = A <~ inaccessible, X strong limit < A for some X* < X, 

(Ds x*< cf(5)(x} holds. 

3) I f  A -- A <:~, and 

S = {6 < A: cf(~) < fi, 2 of(5) < A, and [A > cov(I6l,cf((~)+,cf(~)+,cf(~)]} 

then (De) +, so if  A is a successor cardinal we have (>+. 
4) Assume 4 A = A <x > 0 = cf(0) > a -- cf(a), 0 ~ < A, 0 + < A, S C_ A, 

{(~ E S: cf((~) = 0} is stationary, C = (Ca: a E S), for a E S, Ca is a closed 

subset of a, [/3 E Ca ~ / 3  E S & C a =/3MC~].  Assume further that for no a < A 

is there P C {a C_ a: lal = O}, such that [a E 73 g= b E 73 & a ~ b ~ IaNb I < a], 

and [a C_ A N R e g \  M i n a  > 0 & la[ < 0 => A > sup(A N pcfa)] (e.g., A successor). 

Then (Df ) s .  holds where So = {5 E S :  cf(6) = a}. 

Proof: Easy. For example,  4) By [Sh:g, Ch. III, w without  loss of generality 

for every club E of A for some 6 E EMS,  C5 C_ E if 0 + < A, and otp (C5 NE)  < 0 

otherwise. Let  X = ~3(A) +, let (Mi: i < A) be such that:  Mi -~ (H(X), E, <x) ,  

[]Mi][ < A, A E Mi, Mi M A an ordinal, (Mj: j ~ i} E Mi+I.  Let  for 6 E S~, 

735 ~- M5+1 N 73((~). It is enough to show tha t  75 = (735:5 E S~) exemplifies 

(Dg)s. .  So let (x~: a < A) E M0 list the bounded subsets of A each appearing A 

times. Let  X C_ A, Eo be a club of A; we define by induction on a ,  h x ( a )  < A 

as the first 7 < A such tha t  7 > U~<~ hx(/3) and X M a = X~. Let  (M*: i < A) 

be chosen as above but  also hx  E M~, (Mi: i < A) E M~, Eo E M~. Let 

E = :  { S E E 0 : M ~ N A = 5 = M s N A } ; c l e a r l y i t i s a c l u b o f A .  Let  5 E  S M E ,  

cf(6) = 0 be such tha t  C5 C_ E.  Now we imitate  the proof [Sh 410, w or direct ly 

as in [Sh 420, w for h x  [ C5. H3.6 

3.7 CLAIM: Above, instead of demanding on n 

= cf( ) 2 < < cov(l l, < 

it su/~ces to demand "~, -- cf(~) < A and if  T is a tree with ~-levels and < A 

nodes then T has < A ~-branches". See [Sh 589, w for a pcf-characterization of 

this property. 

4 If A = #+,/~ = cf(/~) > ~ = cf(~) > a = cf(a) then there are S, C' as in 3.6(4)(see 
[Sh 351, w or [Sh:g, Ch. III, 2.14]+[E12]). Of course, we get not just guessing on 
a stationary set but on a positive set modulo a larger ideal. 
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3.8 LEMMA: (1) Suppose d is an operation on X ,  i.e., d is a function from 

7)(X) to 7)(X). Assume further ~ _< n* < # = #'~ and we let 

7)* = {AC_ x :  [AI = ~ a n d  for every  B C_ A satisfying IBI = ~* there  is 

B' c_ B, IB'I = ~ such that d(B') C_ A, and Id(B')l = ~ } .  

I f  ~* < "l~ (~) <_ # then there is function h: X --+ # such that: i f  A C 7)* then 

h I A is onto #. 

(2) Actually,  instead of " ~ ( ~ )  <_ #" we jus t  need a conclusion of  it: 

, 1 (*)1 = ( ),,~. (VA >_/~)(30)[0 E Reg and s* < 0 < # and cov(A,0+,0+,0) = A], 

or even ju s t  a conclusion o f  that: 

(*)2 2 = (*)~,~. for every A >_ # for some 0 < #, 0 >_ ~ * we have: 

| 0,,~* = | : there is no family 7 ) of > A subsets of A each of cardinality 0 

with the  intersection of any two having cardinality < ~*. 

3.9 Remark:  (1) The holding of (*)2 is characterized in [Sh 410, w 

(2) On earlier results concerning such problems and earlier history see Hajnal, 

Juh~sz and Shelah [HJSh 249]. In particular, the following is quite a well known 

problem: 

(~ Non-compactum partition problem: Can every topological space be divided 

into two pieces, such that no part contains a closed homeomorphic copy of 

~2 (or any topological space Y such that every scattered set is countable, 

and the closure of a non-scattered set has cardinality continuum)? 

(3) Note that  the condition in (*)2 holds if # = 2 ~~ > R~, ~ = No, ~* = R1 

and @~ (from 2.1) (which holds, e.g., if Y = V0 P, P a c.c.c, forcing making the 

continuum > "l y~ So in this case the answer to @ is positive. 

-0,Sll then the answer to G (4) Also if # = 2 ~~ > 0 >__ R1, and (VA)[A _> 2 ~~ ~ ~9~ ] 

~a~ [Sh 410, w in (2) is yes; now on ~x see 

Proof: We prove by induction on A C [#, [X[] that: 

(*);~ if Z ,Y are disjoint subsets of X, [Y[ _< )h then there is a set Y+, Y C 

Y+ C_ X \ Z, [Y+[ _< A and a function h : Y+ --+ # such that: if A E 7)*, 

n* < 0 < #, | iAnY+[ >_ 0 and [ANZ[ < ~ then h t ( ANY+ ) is onto tt. 
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CASE 1: A = #, SO IYI < #. 

Without loss of generality [B _C Y and IBI < e; and Ic2(B)l = # ~ cg(B) \ Z C 

Y]. Now just note that :Py =: {d (B)  M Y: B C Y, IBI < ~, Ic~(B) N YI = #} has 

cardinality _< # = #~, and by the definition of 7 )* (using the demand [AN Z I < # 

in (*)~), it suffices that h satisfies: [A E 7'y ~ h ~ Z is onto #], which is easily 

accomplished. 

CASE 2: A > p .  

Let X = (2~) +, (Ni: i < )~) an increasing continuous sequence of elementary 

submodels of (7-/(X), E, <X) , (X,d,Y,Z,A} E No, #+1  C No, {Ni: i <_ J/ E Nj+I 

(when i < A) and liAr/I] -- # -t-]i I. 

We define, by induction on i < )~, a set Y~+ and a function hi as follows: 

(Yi +, hi) is the <x-first pair (Y*, h*) such that: 

(a) Y* c x \ ( z  u Uj<i Yj+), 
(b) YnNi- .Uj<iYj+' .Z  C_XnNi' .Uj<iYj+'.Z C_Y *, 
(c) Ir*l = .  +Iil, 
(d) h*:Y* --+#, 

o , n . < O < # , l A f l y . l > O ,  iAA(ZuUj<iyj+)l<#then (e) if A E P*, | - 
h* I (A A Y*) is onto #. 

Note: (Yi +, hi) exists by the induction hypothesis applied to the cardinal # +  liI 
y +  and the sets Z U Uj<i  j , X {")Ni \ Uj<i Y~+- Also, it is easy to check that 

(~Y+ h.~" _ * " _ j , 3J. J < i) E N/+I (as we always choose "the <n-first , hence Y/+ C Ni+l). 
y +  Let Y+ = Ui<n i , h = Ui<~ hi. Clearly Y C Ui<~ Ni, hence by requirement 

(b) clearly Y C_ Y+ (and even X M NA \ Z c Y+); by requirements (c) (and 

(a)) clearly IY+I = A, by requirement (a) clearly Y+ C X \ Z and even Y+ = 

X n N ~  ".Z. 
By requirements (a) + (d), h is a function from Y+ to #. Now suppose A E ;o* 

| ~. < 0 < #, IA M Y+I >-- 0, IAM Z I < #; we should prove "h [ (A MY+) is 

onto #". So IA A NA I _> 9. Choose (5*, 0") a pair such that: 

(i) 5" < A, 
o* ~* <_ O* (ii) | I' < #' 

(iii) [AM N~. I -> # or 5* = A, 

(iv) under (i) + (ii) + (iii), 5* is minimal. 

This pair is well defined as (A, 0) satisfies requirement (i) + (ii) + (iii). 

SUBCASE 1: 5* is zero. 

So tY + ('1A[ >_ 0* _> g*, hence by the choice of h0 we are done. 
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SUBCASE 2: 5" = i + 1. 

So [ANNi] < #, hence [An [.Jj<iYj+[ < #, hence [AN(ZU[.Jj<iYj+)[ < #. 

Clearly | holds (as/z+ [/[ = / z +  15"1) , so if [ANY~+[ _> 0* we are done by the 

choice of hi; if not, [AN(ZUl.Jj<i+ 1Yj+)[ </~ and ANY/+1 _ ANNi+I = ANN~. 

has cardinality >_ 8" (and | +11 holds) so we are done by the choice of hi+l. 

S U B C A S E  3:  5" limit < A. 

So for some i < 5*, [An N~[ _> 8" [why? as 8" < # < A]. Now in N~+~ there is 

a maximal family Q c_ IX N Ni] e" satisfying [B1 ~ B2 �9 Q =r [B1 n B2[ < ~;*], 

hence [Q[ _< # + 15"1 and without loss of generality Q E Ni+l, hence Q c_ N~. 

so there is B �9 Q, B �9 N~., IB N A] > ~*; but IBI = 8" < # = #~ hence 

[B' �9 [B n A] '~ ~ B n A �9 N~.]. As A �9 P* there is B' �9 [BNA] ~ with c2(B') C_ 

A, [c~(B')[ = #. Clearly c~(B') �9 N~., hence for some j �9 (i,5"), c~(B') �9 Nj, 
hence c~(B') C_ X N N j .  So [ANNj[ >_ #. By assumption for some 8' �9 [g*,#), 

0' | so (j, 0 ~) contradicts the choice of (5*, 8"). 

SUBCASE 4: 5* limit = ~. 

As A E No, there is a maximal family Q g [s satisfying [B1 ~ B2 �9 

Q ~ ]B1 n B2] < a*] which belongs to No. By the assumption (*)2, we know 

IQ] -< ~. We define, by induction on j _< ~, a one-to-one function gj from 

Nj n X \ Z onto an initial segment of ~ increasing continuous in j, gj the <x- 

first such function. So clearly gj �9 Nj+ 1 and let Q' = {g~(B): B �9 Q} (i.e. 

{{g~(x): x E B}: B �9 Q}; note: g;~ is necessarily a one-to-one function from 

N;~ f'l X "- Z onto ~). So for some B E Q', IB' N A I _> a*, so as in subcase 3, 

for some B ' � 9  N;,, B ' C  B N A ,  ]B'[ = a, cZ(B') C_ A, ]cZ(B')l = #; so for some 

i < ~, c2(B') C_ Ni. But I A n Z] < #, so ]An Y/+] = # and by assumption (*)2, 

for some 8, ~* _< 8 < # we have |176 contradicting the choice of (5",8") (i.e., 

minimality of 5"). |a.8 

3.10 Discussion: (t) So if we return to the topological problem (see (~ of 3.9(2)), 

by 3.8 + 3.9(4), if 2 ~~ > 0 _> R1 we can try 0 = R2, ~* = R0, ~ = R1. So a 

negative answer to @ (i.e., the consistency of a negative answer) is hard to come 
--t~,R1 by: it implies that for some ~, -~ga , a statement which, when 0 > R1, at 

present we do not know is consistent (but clearly it requires large cardinals). 

(2) If we want # = 2 u~ = R2, 8 = •1 - -  ~* we should consider a changed 

framework. We have a family ~ of ideals on cardinals 8 < # which are x-based 

(i.e., if a �9 i+ ,  I �9 ~ (similar to [HaSh 249]) then 3B E [A]~(B E I+)) and in 



Vol. 116, 2000 THE GENERALIZED CONTINUUM HYPOTHESIS REVISITED 315 

3.8 replace 7 )* by 

= P~ =: {A C_ X: IA[ = # and for every pairwise p* distinct 

x~ �9 A for a < 0 we have 

{u c_ o: Id{x . :  �9 < ,} 

is included in some I �9 2~, 
J 

and replace (*)2 by 

(*)3 For every ~ >_ # assume 

F C_ {(0, I,  f) :  I �9 3, 0 = Dora(I), f :  0 --+ ,~ is one to one} 

and if (Ot, Ie, f~) C F for g = 1,2 are distinct then {c~ < 02: f2(c~) �9 

Rang f l  } � 9  

Then IF I _< ~. 
Note that the present P* fits for dealing with @ of 3.9(2) and repeating the 

proof of 3.8. 

3.11 Discussion of Consistency of no: There are some restrictions on such 

theorems. Suppose 

(*) GCH and there is a stationary S C_ {5 < R~+i: cf(5) = RI} and (A~: 5 E S) 

such that: A~ C_ 5 -- supA~, otp(A~) = wl and 51 # 52 ~ IA~, NA~:] < R0. 

(This statement is consistent by [HJSh 249, 4.6, p. 384] which continues 

[Sh 108].) Now on lq~l we define a closure operation: 

a �9 d (u )  r (35 �9 S)[a �9 A~ & (uNA~) _> R0]. 

This certainly falls under the statement of 3.8(2) with n = n* = R0,# = R1, 

except the pcf assumptions (*)1 and (*)2 fail. However, this is not a case of our 

theorem. 

4. Appendix: Existence of  tiny models 

We deal now with a model theoretic problem, the existence of tiny models; we 

continue Laskowski, Pillay, and Rothmaler [LaPiRo]; our main result is in 4.6. 

4.1 Context: Assume T is a complete first order theory. Let ITI be the number 

of first order formulas r ~ = (x~: g < n), n < w, up to equivalence modulo T. 
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Assume T is categorical in all cardinals ;g > A =: ITI and call a model M of T 

tiny if IIMII < #(= ]T]). It is known that a T with a tiny model satisfies exactly 

one of the following: 

(a) T is totally transcendental, trivial (i.e., any regular type is trivial), 

(b) T is not totally transcendental. 

4.2 QUESTION: For which # < A are there T, IT[ = A (which is categorical in 

A + and) with a tiny model ofeardinality #? 

4.3 Discussion: By [LaPiRo] we can deal with just the following two cases (see 

[LaPiRo], 0.3, p. 386 and 3871-21 and 1.7, p. 390). 

CASE A: x = x is a minimal formula and its prime model consists of individual 

constants. 

CASE B: T is superstable not totally transcendental and is unidimensional, the 

formula x = x is weakly minimal, regular types are trivial and its prime model 

consists of individual constants. 

They proved: (V~)[~ ~o < ~+ ~ in case A, # = R0] (see [LaPiRo, 2.1, p. 341]). 

Actually more is true by continuing their argument. 

4.4 LEMMA: I f  ~,lz, T a r e  as above, in Case A, then: 

(i) A < "3~o, 

(ii) we can find (An: n < w) such that: Ao = #, An _~ An+l, A = ~--~n<o~ k,~ and 

(hence in particular (*)~,~,~+), where 

(*)~,~,0 there is a family of 0 subsets of a each of cardinality #, with the 

intersection of any two being finite, or equivalently 0 functions from 

# to ~ such that for any two such distinct functions f~, f "  we have 

{i < #: f ' ( i )  = f"( i )}  is finite. 

Proo~ By 1.2(2), (ii) ::~ (i), so let us prove (ii). Let M be a tiny model of T, 

IIMII = 

For n >_ 0, let ~ n  be the family of definable (with parameters) subsets of 

'~+IM. Clearly IT[ _< ~ < ~  [fl~[, also # = I[M[[ _< ]f13~[, I~n[ _< 1~+1[. Also 

I~0l = IIMll as M ]s minimal which means A0 = #; let An =: I ~ l ,  so ~ _< ,X~+l; 

# = ~ n < ~  A~ and it is enough to prove ( , ) , ,~ ,~+~ when A,~ < A,~+I. For each 

R E ~ + 1  we define a function fR from M to ~,~, fR(a) = {b E aM: D ̂ < a >c 

R}. So {fR: R E ~,~+1} is a family of An+l functions from M to ~Sn, hence it is 

enough to show: 

define R1 ~ R2 :=~ {a E M0: fR,(a) = fR2(a)} is co-finite; 
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then 

(a) ~ is an equivalence relation on ~n+l ,  

(/3) each ~-equivalence class has cardinality < An, 

(7) if -~[R1 ~ R2], R1 E ~B,~+I, R2 E ~B,~+I then {a E M: fRl(a) = fR2(a)} is 
finite. 

Now clause (a) is straight, for clause (/3) just compute, for clause (7) remember 

x = x is a minimal formula. Together, a set of representations T for ~ + 1 / ~  will 

have cardinality A,~+I (as I~B,~+ll -- An+l > An = I~Bnl >__ # by clauses (a), (/3)) 
and {fR: R E T}  is a set of functions as required. "4.4 

4.5 LEMMA: Suppose (*)~,~,~, # < A. Then 

(a) there is a group G of permutations of # such that IGI = A and f ~k g E 

G ~ {a < #: f ( a )  = g(a)} is finite, 
(b) there is a theory T as in 1.1, [T I = A, with a tiny model of cardinality # of 

Case A. 

Proof." As (a) ~ (b) is proved in [LaPiRo], p. 39223-31 we concentrate on (a). 

Let p r ( - , - )  be a pairing function on #, i.e., pr is one-to-one from # x it onto it. 

So let {A~: ~ < A} C_ [it]~ be such that ~ # ~ ~ R0 > IAcNAr Clearly itso >_ A, 

hence there is a list r162 ~ < A) of distinct members of ~it. By renaming we 

can have the family {A~,~: ~ < A,n < w}, such that (Ar E [it]", [(~, n) 

(~, m) ~ IA~,~ n A(,ml < R0] and) U(<x Ar n [_Jr Ar = 0 for n # m, and 

~ ~ -4 (3n)(Vm)[n <_ m < w --4 Ac,n A Ar = 0] (use f/0" Let g0r E ~it be 

g~,n(a) = the a th  member of Ar and 9~,~(a) = pr(a, g~,~(a)), so also g1r is a 

function from it to #. 

We define the set A = # • (~>{-1 ,+1}) ;  clearly IA[ = it. Let x , y  vary 

on { - 1 , + 1 } .  Now for ~ < A we define a permutation fr of A, by defining 

f~-I [ (it x {~}) = fc [ (# x {r/}), f~-I [ (it • {7/}) for 77 e n{-1 ,  +1} by induction 

on n (so in the end, f~-I is the inverse of fc = f~-l). 

For n = 0, r /=  (} and let for x E {-1 ,  +1}, f~(a,  ()) = (g~,0(~), (x}). 
For n + 1, ~] = u^(y} E n+1{-1 ,+1}  we let 

(a) f~(a,~?) = (/3, u) when 
x = - y ,  f~(/3, u) = (a, r/) (by the previous stage), 

= ( g r  (X)) when (a) does not apply. ( / 3 )  a ^ 

Easily f~ is a well-defined permutation of A. 

Now {fr : ~ < A} generates a group G of permutations of A. We shall prove it 

generates G freely; moreover: 

| if n < w, t = ((~(e),x(e)) : e _< n) is such that ~(e) < A, x(e) E {-1 ,1} ,  

and for no g < n do we have r = r + 1) and x(g) = - x ( g +  1) 
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(i.e., 1--[ r*(t) is a non-trivial group term) then 1 l t < n  Jr 

At = {a c A: ( H  r*(t) jr )(a) = a} 
t<n 

is finite. 

As IAI = #, this clearly suffices. 

I--[ r~(t) is preserved by conjugation without  loss of As this property of l lt<,~ Jr 

generality 

(*)o g < n ~ ~(g) # ~(t?+ 1) Vx(g) # x (g+  1) where n +  1 is interpreted as zero. 

For any a C At let 
(*)1 bt[a] n x(t) = (1-It=m fi(~))(a) for m _< n + 1 

(so bt+l[a] = a = bto[a] and for m = 0 , . . .  , n  we have 

btm[a] r~(m)(bt ral~ ---- Jr \ m + l t  J)), 

(*)2 btm[a] = (/3tm[a],rf[a]). 

Choose m* < w large enough such that:  

(*)3 i f m  > m* a n d 0  < el < ~2 _< n and ~(el) :~ ~(g2) thenAr162 = 
0. 

For a e At let m = m[a] < n + 1 be such tha t  lg(~ltm[a]) is maximal and call 

the length k = k[a]. As fr 7)) = (/3, u) implies lg(v) e {/g(u) - 1, lg(u) + 1}, 

clearly 

(*)4 /g(/ltm-l[a]) = lg(?TtmTl[a]) = Ig(~7~[a]) - 1 (where m - 1 ,m + 1 means 

mod n + 1). 

Clearly 
(*)5(a) bt~[a] x(m) t = f~(m)(bm+l[a])' 

(b) b~_l[a ] rx(m-1) = Jr hence (as ( f ~ m - l ~ ) - i  _- Jr we have 

(b)' btm[a] = .f-~(m-1) r (btm-l[a]) �9 
~e--x(rn-1) 

Looking at  the definition of Jr (b t - l [a] ) ,  as m = m[a], by (*)a clause (/3) 

in the definition of f applies, so 
~e--x(m--1) (l~t gl t 

(*)6(a) J~(m-1) (~'m-l[a]) --~ ( ~(m-1),k[a](/3m-l[a])' (rltm-l[a])^(--x(m -- 1))). 

Similarly looking at the definition rx(m){bt [a]), by (*)4 clause (/3) applies, so Jr ~ m+l 
rz(m)/b t ra l~ ~ t a ( * )6 (b )  J r  m + l t  JJ : (gr ]) '  (~?t+l[a])^(x(m)))" 

By (*)5(b)' + (*)6(a) we have 
(*)7(a) b~[a] 1 t = (g~(m-1),k[a] (/3rn-1 [hi), (~/~n-1 [a])^ ( - - x (  m -- 1)) ) .  

By (*)5(a) + (*)6(b) we have 
(*)7(b) btm[a] 1 t t : (g~(m),k[a] (/3m+1 [a]), (T/m+l [a] ) ^ ( x (m) ) ) ) .  
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We can conclude by (*)r(a) + (*)r(b) that  

(*)8 x(m) = - x ( m  - 1), hence x(m) # x (m - 1). 

So by (*)0 applied to m - 1 we get 

(*)9 ~(m) # ~(m - 1). 

Clearly by (*)7(a) + (*)7(b) we have 
(*)10 1 t a 1 t a g~r ])= gr ]). 
Now by the choice of the g~'s (and the pairing function) and (*)m 

/~m+l[a]  : /~tm_l[a ] and o t gr g r  = o 
So by (*)n and the choice of the g~'s 
(*)12 o ~ go rZt 

gr (/~m+l[a]) = g(m-1),kM ~ m-lJ  C Ar f-I Ag(m-1),k[a]" 
If k[a] > m* we get a contradiction (by (*)3), so remembering m = re[a] necessar- 

ily/g(r/tmM [hi) < m* + 1, hence by the choice of m[a] we have he  Ig(rff~[a]) < m*. 
So {(r/}[a]: g < n + 1}: a C At} is finite, hence it suffices to prove for each 

E ~+1{-1,  1} the finiteness of 

{r/~[a]: At,~ = {a C At: g < n +  1} = ~/}. 

Let us fix ~. 

As for a C At,~ we have gg(rlt[a]) < m* for *? < n + 1, it is enough to prove 

that  for each k = (ke: ~ < n) the following set is finite: 

At,#, ~ =: {a e At,#: gg(rlt[a]) = k~ for < n + 1}. 

Let K(fr = {g <_ n + 1: ke is > k~-l,  k~+l} (i.e., a local maximum).  

For each m E K(k) ,  the arguments  in (*)a - (*)la apply, so by (*)11, if a E 
A,,,~,fr then the value gg(~t[a]) is determined and o t gr (r ~ Ar n 
A~(m_l),k," but  the latter is finite so we can fix 0 t , gr = "Ym, but  

1 t 0 t gr (flm+l[a]) can be computed from ~/= gr (/~m+l [a]) and (r km), 
i.e., as pr(otp(Ar N ~), %~). 

But by (*)r(b) the latter is fi t[a] and as r/t~[a] = rim the value of btm[a] is 

uniquely determined. Similarly by induction we can compute the other b t ,  [a] for 

every m ' , ' i n  particular b~[a] = a, so we are done. 114.5 

4.6 Conclusion: For a cardinal #, the following are equivalent: 

(a) there is a T as in 4.5(b) (i.e., T categorical in ITI +, IT] > #), with a t iny 

model M, IIMII = # as in Case A above, 

(b) (*).,•,.+, 
(c) there is a group G of permutat ions of #, [GI = / * +  such tha t  for g e G, 

{a < p: g(a) = a} is finite or is #. 
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